organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Hua Zeng, Ming-Wu Ding* and Hong-Wu He*

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: zengken@126.com

Key indicators

Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.007 \text{ Å}$ Disorder in main residue R factor = 0.060 wR factor = 0.169 Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Isopropyl-2-phenoxy-5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidin-4(3H)-one

In the title compound, $C_{19}H_{20}N_2O_2S$, the central thienopyrimidine ring system is essentially planar. The molecular structure is stabilized by $C-H\cdots O$ hydrogen bonds. In the crystal packing, the molecules are linked only by van der Waals forces.

Received 12 December 2005 Accepted 22 December 2005 Online 11 January 2006

Comment

Pyrimidine derivatives are attracting the increasing attention of the synthetic community because of the important role played by such systems in many natural products, antibiotics and drugs (Ding *et al.*, 2004). In recent years, we have been engaged in the preparation of derivatives of heterocycles *via* the aza-Wittig reaction. The title compound, (I), was synthesized and structurally characterized in this context.

In the title molecule (Fig. 1), the central thienopyrimidine ring system is essentially planar, with a maximum displacement of 0.077 (3) Å for atom N1. Selected bond lengths and angles are listed in Table 1. The C14–C19 phenyl ring is twisted by an angle of 75.90 (13)° with respect to the mean plane of the thienopyrimidine ring system.

There are three intramolecular C-H···O hydrogen bonds which stabilize the molecular structure (Table 2). The crystal packing is determined by van der Waals forces, neither intermolecular hydrogen-bonding interactions nor π - π stacking interactions being observed.

Experimental

To a solution of iminophosphorane (1.45 g, 3 mmol) in anhydrous dichloromethane (15 ml) was added isopropyl isocyanate (3 mmol) under dry nitrogen at room temperature. The reaction mixture was left unstirred for 48 h at room temperature and then the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:3 ν/ν , 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed, and the residue was dissolved in CH₃CN (15 ml). PhOH (3.1 mmol) and excess K₂CO₃ were then added to the solution of the carbodiimide. After stirring the mixture for 18 h at room temperature, the solution was evapo-

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

rated and the residue was recrystallized from EtOH to give the title compound, (I), in a yield of 70% (m.p. 422 K). ¹H NMR (CDCl₃, 400 MHz): 7.46–7.17 (*m*, 5H, Ar-H), 5.63 (*m*, 1H, CH), 2.99–2.66 (*m*, 4H, 2CH₂), 1.83–1.82 (*m*, 4H, 2CH₂), 1.59–1.58 (*d*, J = 6.8 Hz, 6H, 2CH₃); MS (EI, 70 eV) m/z (%): 340 (M^+ , 100), 298 (53), 270 (45), 255 (76), 227 (42). Elemental analysis calculated for C₁₉H₂₀N₂O₂S: C 67.03, H 5.92, N 8.23%; found: C 66.85, H 5.85, N 8.17%. Crystals suitable for single-crystal X-ray diffraction were obtained from a hexane/dichloromethane solution (1:3 ν/ν) at room temperature.

 $D_x = 1.290 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 1462 reflections $\theta = 2.9-21.1^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 292 (2) K Block, colourless $0.30 \times 0.20 \times 0.20 \text{ mm}$

3473 independent reflections

 $R_{\rm int} = 0.025$

 $\theta_{\rm max} = 27.0^{\circ}$

 $h = -13 \rightarrow 15$ $k = -7 \rightarrow 7$

 $l = -16 \rightarrow 16$

2596 reflections with $I > 2\sigma(I)$

Crystal data

$C_{19}H_{20}N_2O_2S$
$M_r = 340.43$
Monoclinic, P2 ₁
a = 12.4411 (15) Å
b = 5.8030 (7) Å
c = 13.2870 (16) Å
$\beta = 113.994 (2)^{\circ}$
$V = 876.37 (18) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.943, T_{\max} = 0.962$ 5473 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0921P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.060$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.169$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.05 $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 3473 reflections Absolute structure: Flack (1983), 231 parameters H atoms treated by a mixture of 1386 Friedel pairs Flack parameter: -0.01 (12) independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

1.367 (5)	C8-N2	1.370 (4)
1.745 (4)	C8-S1	1.707 (4)
1.415 (5)	C9-O1	1.220 (4)
1.391 (4)	C9-N1	1.416 (4)
1.444 (5)		
91.48 (17)		
	1.367 (5) 1.745 (4) 1.415 (5) 1.391 (4) 1.444 (5) 91.48 (17)	$\begin{array}{cccc} 1.367 \ (5) & C8-N2 \\ 1.745 \ (4) & C8-S1 \\ 1.415 \ (5) & C9-O1 \\ 1.391 \ (4) & C9-N1 \\ 1.444 \ (5) \\ \end{array}$

Table 2

Hvdrogen-bond	geometry	(Å. °`).
ing an ogen oona	Securet,	(,	<i>.</i> .

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C10-H10\cdots O1$ $C11-H11C\cdots O2$ $C12-H124\cdots O2$	0.98 (4)	2.21 (4)	2.733 (5)	112 (3)
	0.96	2.27	2.846 (6)	118
	0.96	2.43	2.981 (5)	116

The positional parameters of H10, bonded to C10, were refined freely. All other H atoms were placed at calculated positions and treated as riding atoms, with C–H = 0.93–0.97 Å, and $U_{\rm iso}({\rm H})$ = $1.2U_{\rm eq}({\rm C})$ for aromatic and methylene H atoms or $1.5U_{\rm eq}({\rm C})$ for methyl H atoms. The terminal cyclohexene ring is disordered. There are two possible conformations, C1–C6 and C1/C2[']/C3[']/C4–C6, with an occupancy ratio of 0.690 (12):0.310 (12).

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Both disorder components are shown.

Packing diagram of the title compound, viewed along the *a* axis. Only the major conformation of the disordered cyclohexene ring is shown.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2001).

We gratefully acknowledge financial support of this work by the National Basic Research Programme of China (2003CB114400) and the National Natural Science Foundation of China (Nos. 20372023 and 20102001).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of
- Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.